1 Find $\int 7 x^{\frac{5}{2}} \mathrm{~d} x$.

2 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{18}{x^{3}}+2$. The curve passes through the point $(3,6)$. Find the equation of the curve.

3 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{\frac{1}{2}}-5$. Given also that the curve passes through the point (4, 20), find the equation of the curve.

4 Find $\int_{2}^{5}\left(2 x^{3}+3\right) \mathrm{d} x$.

5 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \sqrt{x}-2$. Given also that the curve passes through the point $(9,4)$, find the equation of the curve.
$6 \quad$ Find $\int_{2}^{5}\left(1-\frac{6}{x^{3}}\right) \mathrm{d} x$.

7 Find $\int_{1}^{2}\left(12 x^{5}+5\right) \mathrm{d} x$.

8 The gradient of a curve is $3 \sqrt{x}-5$. The curve passes through the point $(4,6)$. Find the equation of
the curve.

9 A curve has gradient given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \sqrt{x}$. Find the equation of the curve, given that it passes through the point $(9,105)$.

10 Find $\int_{1}^{2}\left(\begin{array}{ll}x^{4} & \frac{3}{x^{2}}+1\end{array}\right) \mathrm{d} x$, showing your working.

11 Find $\int 30 x^{\frac{3}{2}} \mathrm{~d} x$.

12 Find $\int\left(x^{5}+10 x^{\frac{3}{2}}\right) \mathrm{d} x$. [4]

